Australian Intermediate Mathematics Olympiad 2017

Questions

1. The number x is 111 when written in base b, but it is 212 when written in base $b-2$. What is x in base 10 ?
2. A triangle $A B C$ is divided into four regions by three lines parallel to $B C$. The lines divide $A B$ into four equal segments. If the second largest region has area 225 , what is the area of $A B C$?
[2 marks]
3. Twelve students in a class are each given a square card. The side length of each card is a whole number of centimetres from 1 to 12 and no two cards are the same size. Each student cuts his/her card into unit squares (of side length 1 cm). The teacher challenges them to join all their unit squares edge to edge to form a single larger square without gaps. They find that this is impossible.
Alice, one of the students, originally had a card of side length $a \mathrm{~cm}$. She says, 'If I don't use any of my squares, but everyone else uses their squares, then it is possible!'
Bob, another student, originally had a card of side length $b \mathrm{~cm}$. He says, 'Me too! If I don't use any of my squares, but everyone else uses theirs, then it is possible!'
Assuming Alice and Bob are correct, what is $a b$?
4. Aimosia is a country which has three kinds of coins, each worth a different whole number of dollars. Jack, Jill, and Jimmy each have at least one of each type of coin. Jack has 4 coins totalling $\$ 28$, Jill has 5 coins worth $\$ 21$, and Jimmy has exactly 3 coins. What is the total value of Jimmy's coins?
5. Triangle $A B C$ has $A B=90, B C=50$, and $C A=70$. A circle is drawn with centre P on $A B$ such that $C A$ and $C B$ are tangents to the circle. Find $2 A P$.
[3 marks]
6. In quadrilateral $P Q R S, P S=5, S R=6, R Q=4$, and $\angle P=\angle Q=60^{\circ}$. Given that $2 P Q=a+\sqrt{b}$, where a and b are unique positive integers, find the value of $a+b$.
[4 marks]

7. Dan has a jar containing a number of red and green sweets. If he selects a sweet at random, notes its colour, puts it back and then selects a second sweet, the probability that both are red is 105% of the probability that both are red if he eats the first sweet before selecting the second. What is the largest number of sweets that could be in the jar?
8. Three circles, each of diameter 1 , are drawn each tangential to the others. A square enclosing the three circles is drawn so that two adjacent sides of the square are tangents to one of the circles and the square is as small as possible. The side length of this square is $a+\frac{\sqrt{b}+\sqrt{c}}{12}$ where a, b, c are integers that are unique (except for swapping b and c). Find $a+b+c$.
[4 marks]
9. Ten points $P_{1}, P_{2}, \ldots, P_{10}$ are equally spaced around a circle. They are connected in separate pairs by 5 line segments. How many ways can such line segments be drawn so that only one pair of line segments intersect?
10. Ten-dig is a game for two players. They try to make a 10 -digit number with all its digits different. The first player, A, writes any non-zero digit. On the right of this digit, the second player, B, then writes a digit so that the 2-digit number formed is divisible by 2 . They take turns to add a digit, always on the right, but when the nth digit is added, the number formed must be divisible by n. The game finishes when a 10 -digit number is successfully made (in which case it is a draw) or the next player cannot legally place a digit (in which case the other player wins).
Show that there is only one way to reach a draw.

[5 marks]

Investigation

Show that if A starts with any non-zero even digit, then A can always win matter how B responds.
[4 bonus marks]

Australian Intermediate Mathematics Olympiad 2017

Solutions

1. We have $x=b^{2}+b+1$ and $x=2(b-2)^{2}+(b-2)+2=2\left(b^{2}-4 b+4\right)+b=2 b^{2}-7 b+8$. 1

Hence $0=\left(2 b^{2}-7 b+8\right)-\left(b^{2}+b+1\right)=b^{2}-8 b+7=(b-7)(b-1)$.
From the given information, $b-2>2$. So $b=7$ and $x=49+7+1=\mathbf{5 7}$.
2. Method 1

Let $B_{1} C_{1}, B_{2} C_{2}, B_{3} C_{3}$, be the lines parallel to $B C$ as shown. Then triangles $A B C, A B_{1} C_{1}$, $A B_{2} C_{2}, A B_{3} C_{3}$ are equiangular, hence similar. Region $B_{3} C_{3} C_{2} B_{2}$ has area 225 .

Since the lines divide $A B$ into four equal segments, the sides and altitudes of the triangles are in the ratio 1:2:3:4. So their areas are in the ratio 1:4:9:16.
Let the area of triangle $A B_{1} C_{1}$ be x. Then $225=\left|A B_{3} C_{3}\right|-\left|A B_{2} C_{2}\right|=9 x-4 x=5 x$ and the area of triangle $A B C$ is $16 x=16 \times \frac{225}{5}=16 \times 45=\mathbf{7 2 0}$.

Method 2

Let $B_{1} C_{1}, B_{2} C_{2}, B_{3} C_{3}$, be the lines parallel to $B C$. Draw lines parallel to $A B$ as shown. This produces 4 small congruent triangles and 6 small congruent parallelograms.

Drawing the diagonal from top left to bottom right in any parallelogram produces two triangles that are congruent to the top triangle. Thus triangle $A B C$ can be divided into 16 congruent triangles. The region $B_{3} C_{3} C_{2} B_{2}$ has area 225 and consists of 5 of these triangles. Hence $225=\frac{5}{16} \times|A B C|$ and $|A B C|=\frac{16}{5} \times 225=720$.
3. Method 1

Firstly, we note that the combined area of the 12 student cards is $1+4+9+16+25+36+49+64+81+100+121+144=650$. (Alternatively, use $1+2^{3}+3^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6$.)
According to Alice and Bob, $650-x^{2}=y^{2}$ for some integers x and y, where $1 \leq x \leq 12$. So $y^{2} \geq 650-144=506$ and $y^{2} \leq 650-1=649$. Therefore $23 \leq y \leq 25$.
If $y=23$, then $x=11$. If $y=24$, then x is not an integer. If $y=25$, then $x=5$.
Thus $a=5$ and $b=11$ or vice versa. So $a b=5 \times 11=\mathbf{5 5}$.

Method 2

Firstly, we note that the combined area of the 12 student cards is $1+4+9+16+25+36+49+64+81+100+121+144=650$. (Alternatively, use $1+2^{3}+3^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6$.)
According to Alice, $650-a^{2}=c^{2}$ for some integer c. Since 650 is even, a and c must both be even or odd. If a and c are even, then a^{2} and c^{2} are multiples of 4 . But 650 is not a multiple of 4, so a and c are odd.
We try odd values for a from 1 to 11 .
$650-1^{2}=649$, which is not a perfect square.
$650-3^{2}=641$, which is not a perfect square.
$650-5^{2}=625$, which is 25^{2}, giving one of the solutions.
$650-7^{2}=601$, which is not a perfect square.
$650-9^{2}=569$, which is not a perfect square.
$650-11^{2}=529$, which is 23^{2}, giving the second solution.
Thus $a=5$ and $b=11$ or vice versa. So $a b=5 \times 11=\mathbf{5 5}$.

4. Method 1

Let the value of the three types of coin be a, b, c and let Jack's collection be $2 a+b+c=28$. Then, swapping b with c if necessary, Jill's collection is one of:

$$
\begin{equation*}
3 a+b+c, \quad 2 a+2 b+c, \quad a+2 b+2 c, \quad a+3 b+c . \tag{1}
\end{equation*}
$$

Since $3 a+b+c$ and $2 a+2 b+c$ are greater than 28 , Jill's collection is either $a+2 b+2 c$ or $a+3 b+c$. If $a+2 b+2 c=21$, then adding $2 a+b+c=28$ gives $3(a+b+c)=49$, which is impossible since 3 is not a factor of 49 .
So $a+3 b+c=21$. Subtracting from $2 a+b+c=28$ gives $a=2 b+7$, which means a is odd and at least 9. If $a=9$, then $b=1$ and $c=9$. But a, b, c must be distinct, so a is at least 11 . Since $b+c \geq 3$, we have $2 a \leq 25$ and $a \leq 12$. Hence $a=11, b=2, c=4$ and $a+b+c=\mathbf{1 7}$.

Method 2

Let the value of the three types of coin be a, b, c. Then Jill's collection is one of:

$$
2 a+2 b+c, \quad 3 a+b+c
$$

And Jack's collection is one of:

$$
\begin{equation*}
2 a+b+c, \quad a+2 b+c, \quad a+b+2 c . \tag{1}
\end{equation*}
$$

Suppose Jill's collection is $2 a+2 b+c=21$. Since $2 a+b+c$ and $a+2 b+c$ are less than $2 a+2 b+c$, Jack's collection must be $a+b+2 c=28$. Adding this to Jill's yields $3(a+b+c)=49$, which is impossible since 3 is not a factor of 49 .

So Jill's collection is $3 a+b+c=21$. Since $2 a+b+c$ is less than $3 a+b+c$, Jack's collection must be $a+2 b+c=28$ or $a+b+2 c=28$. Swapping b with c if necessary, we may assume that $a+2 b+c=28$. Subtracting $3 a+b+c=21$ gives $b=2 a+7$ and $c=14-5 a$. So $a \leq 2$. If $a=1$, then $b=9=c$. Hence $a=2, b=11, c=4$ and $a+b+c=\mathbf{1 7}$.

Method 3

Let the value of the three types of coin be a, b, c, where $1 \leq a<b<c$. Then Jack's collection is one of:

$$
2 a+b+c, \quad a+2 b+c, \quad a+b+2 c .
$$

And Jills' collection is one of:

$$
3 a+b+c, \quad 2 a+2 b+c, \quad 2 a+b+2 c, \quad a+3 b+c, \quad a+2 b+2 c, \quad a+b+3 c .
$$

All of Jill's possible collections exceed $2 a+b+c$, so Jack's collection is $a+2 b+c$ or $a+b+2 c$. All of Jill's possible collections exceed $a+2 b+c$, except possibly for $3 a+b+c$. If $3 a+b+c=21$, then subtracting from $a+2 b+c=28$ gives $b=7+2 a \geq 9$. But then $a+2 b+c \geq 1+18+10>28$.
\square
So Jack's collection is $a+b+2 c=28$. Then $a+b$ is even, hence $b \geq 3, a+b \geq 4,2 c=28-a-b \leq$ 24 , and $c \leq 12$. Of Jill's possible collections, only $3 a+b+c, 2 a+2 b+c$, and $a+3 b+c$ could be less than $a+b+2 c$. If $a+3 b+c=21$, then subtracting from $a+b+2 c=28$ gives $c=7+2 b$, which means $c \geq 13$. If $2 a+2 b+c=21$, then subtracting from $2 a+2 b+4 c=56$ gives $3 c=35$, which means c is a fraction.
So $3 a+b+c=21$. Subtracting from $a+b+2 c=28$ gives $c=7+2 a$, which means c is odd and at least 9. If $c=9$, then $a=1$ and $b=9=c$. So $c=11, a=2, b=4$ and $a+b+c=\mathbf{1 7}$.

Method 4

Let the value of the three types of coin be a, b, c, where $1 \leq a<b<c$.
Then Jack's collection is $28=a+b+c+d$ where d equals one of a, b, c. Since $a+b \geq 3$, $c+d \leq 25$. So $d \leq 25-c \leq 25-d$. Then $2 d \leq 25$, hence $d \leq 12$, which implies $a+b+c \geq 16$.
Jills' collection is $21=a+b+c+e$ where e is the sum of two of a, b, c with repetition permitted. So $e \geq 2 a \geq 2$. Hence $a+b+c \leq 19$.
From $a+b+c+d=28$ and $16 \leq a+b+c \leq 19$, we get $9 \leq d \leq 12$.
If $d=a$, then $a+b+c+d>4 d \geq 36$. If $d=b$, then $a+b+c+d>1+3 d \geq 28$. So $d=c$.
From $21=a+b+c+e \geq 16+e \geq 16+2 a$ we get $2 a \leq 5$, hence $a \leq 2$.
The following table lists all cases. Note that each of x and y equals one of a, b, c.

a	$a+b+c$	d	c	b	e	comment
1	16	12	12	3	5	$e \neq x+y$
1	17	11	11	5	4	$e \neq x+y$
1	18	10	10	7	3	$e \neq x+y$
1	19	9	9	9	2	$b=c$
2	16	12	12	2	5	$a=b$
2	17	11	11	4	4	$e=2 a$
2	18	10	10	6	3	$e \neq x+y$
2	19	9	9	8	2	$e \neq x+y$

So $a=2, b=4, c=11, d=11, e=4$, and $a+b+c=17$.
5. Method 1

Let $C A$ touch the circle at R and $C B$ touch the circle at S. Let Q be a point on AB so that $C Q$ and $A B$ are perpendicular.

Let r be the radius of the circle.
From similar triangles $A Q C$ and $A R P, C Q / r=70 / A P$.
From similar triangles $B Q C$ and $B S P, C Q / r=50 / B P=50 /(90-A P)$.
Hence $7(90-A P)=5 A P, 630=12 A P, 2 A P=105$.

Method 2

Let $C A$ touch the circle at R and $C B$ touch the circle at S.

The radius of the circle is the height of triangle $A P C$ on base $A C$ and the height of triangle $B P C$ on base $B C$. So ratio of the area of $A P C$ to the area of $B P C$ is $A C: P C=7: 5$.

Triangles $A P C$ and $B P C$ also have the same height on bases $A P$ and $B P$. So the ratio of their areas is $A P:(90-A P)$. Hence $5 A P=7(90-A P), 12 A P=630$, and $2 A P=\mathbf{1 0 5}$.

Method 3

Let $C A$ touch the circle at R and $C B$ touch the circle at S.

Since $P R=P S$, right-angled triangles $P R C$ and $P S C$ are congruent. Hence $C P$ bisects $\angle A C B$.

From the angle bisector theorem, $A P / P B=A C / B C=7 / 5$. Hence $5 A P=7(90-A P)$,
$12 A P=630$, and $2 A P=105$.
6. Method 1

Let $S S^{\prime}$ and $R R^{\prime}$ be perpendicular to $P Q$ with S^{\prime} and R^{\prime} on $P Q$. Let $R T$ be perpendicular to $S S^{\prime}$ with T on $S S^{\prime}$.

Since $\angle P=60^{\circ}, P S^{\prime}=5 / 2$ and $S S^{\prime}=5 \sqrt{3} / 2$.
Since $\angle Q=60^{\circ}, Q R^{\prime}=2$ and $R R^{\prime}=2 \sqrt{3}$.
Hence $S T=S S^{\prime}-T S^{\prime}=S S^{\prime}-R R^{\prime}=5 \sqrt{3} / 2-2 \sqrt{3}=\sqrt{3} / 2$.
Applying Pythagoras' theorem to $\triangle R T S$ gives $R T^{2}=36-\frac{3}{4}=141 / 4$.
So $P Q=P S^{\prime}+S^{\prime} R^{\prime}+R^{\prime} Q=P S^{\prime}+T R+R^{\prime} Q=5 / 2+\sqrt{141} / 2+2$.
Hence $a+\sqrt{b}=2 P Q=9+\sqrt{141}$. An obvious solution is $a=9, b=141$.
Given that a and b are unique, we have $a+b=\mathbf{1 5 0}$.

Method 2

Let U be the point on $P S$ so that $U R$ is parallel to $P Q$. Let T be the point on $R U$ so that $S T$ is perpendicular to $R U$. Extend $P S$ and $Q R$ to meet at V.

Triangle $P Q V$ is equilateral. Since $U R \| P Q, \triangle U R V$ is equilateral and $P U=Q R=4$. So $U S=1, U T=\frac{1}{2}, S T=\frac{\sqrt{3}}{2}$.
Applying Pythagoras' theorem to $\triangle R T S$ gives $R T^{2}=36-\frac{3}{4}=141 / 4$.
We also have $R T=R U-U T=R V-\frac{1}{2}=Q V-\frac{9}{2}=P Q-\frac{9}{2}$.
So $2 P Q=9+\sqrt{141}=a+\sqrt{b}$. Given that a and b are unique, we have $a+b=\mathbf{1 5 0}$.

Method 3

Extend $P S$ and $Q R$ to meet at V.

Triangle $P Q V$ is equilateral. Let $P Q=x$. Then $V S=x-5$ and $V R=x-4$.
Applying the cosine rule to $\triangle R V S$ gives

$$
\begin{aligned}
36 & =(x-4)^{2}+(x-5)^{2}-2(x-4)(x-5) \cos 60^{\circ} \\
& =\left(x^{2}-8 x+16\right)+\left(x^{2}-10 x+25\right)-\left(x^{2}-9 x+20\right) \\
0 & =x^{2}-9 x-15
\end{aligned}
$$

Hence $2 x=9+\sqrt{81+60}=a+\sqrt{b}$. Given that a and b are unique, we have $a+b=\mathbf{1 5 0}$.

Comment

We can prove that a and b are unique as follows. We have $(a-9)^{2}=141+b-2 \sqrt{141 b}$. So $2 \sqrt{141 b}$ is an integer, hence $141 b$ is a perfect square. Since $141=3 \times 47$ and 3 and 47 are prime, $b=141 m^{2}$ for some integer m. Hence $|a-9|=\sqrt{141}|m-1|$. If neither side of this equation is 0 , then we can rewrite it as $r=\sqrt{141} s$ where r and s are coprime integers, giving $r^{2}=141 s^{2}=3 \times 47 \times s^{2}$. So 3 divides r^{2}. Then 3 divides $r, 9$ divides $r^{2}, 9$ divides $3 s^{2}, 3$ divides s^{2}, hence 3 divides s, a contradiction. So both sides of the equation are 0 . Therefore $a=9$ and $b=141$.

7. Method 1

Let there be r red sweets and g green sweets. We may assume $r \geq 2$. If Dan puts the first sweet back, then the probability that the two selected sweets are red is

$$
\begin{equation*}
\frac{r}{r+g} \times \frac{r}{r+g} . \tag{1}
\end{equation*}
$$

If Dan eats the first sweet, then the probability that the two selected sweets are red is

$$
\begin{equation*}
\frac{r}{r+g} \times \frac{r-1}{r+g-1} . \tag{1}
\end{equation*}
$$

The first probability is 105% of the second, so dividing and rearranging gives

$$
\begin{align*}
\frac{r}{r+g} \times \frac{r+g-1}{r-1} & =\frac{105}{100}=\frac{21}{20} \\
20\left(\frac{r+g-1}{r+g}\right) & =21\left(\frac{r-1}{r}\right) \\
20\left(1-\frac{1}{r+g}\right) & =21\left(1-\frac{1}{r}\right) \\
\frac{21}{r} & =1+\frac{20}{r+g}>1 \tag{1}
\end{align*}
$$

So $r<21$. If $r=20$, then $\frac{1}{20}=\frac{20}{r+g}$, and $r+g=400$.
If $r+g$ increases, then $1+\frac{20}{r+g}$ and therefore $\frac{21}{r}$ decrease, so r increases.
Since r cannot exceed $20, r+g$ cannot exceed 400 .
So the largest number of sweets in the jar is $\mathbf{4 0 0}$.

Method 2

Let there be r red sweets and g green sweets. We may assume $r \geq 2$. If Dan puts the first sweet back, then the probability that the two selected sweets are red is

$$
\begin{equation*}
\frac{r}{r+g} \times \frac{r}{r+g} . \tag{1}
\end{equation*}
$$

If Dan eats the first sweet, then the probability that the two selected sweets are red is

$$
\begin{equation*}
\frac{r}{r+g} \times \frac{r-1}{r+g-1} . \tag{tabular}
\end{equation*}
$$

The first probability is 105% of the second, so dividing and rearranging gives

$$
\begin{align*}
\frac{r}{r+g} \times \frac{r+g-1}{r-1} & =\frac{105}{100}=\frac{21}{20} \\
20 r(r+g-1) & =21(r+g)(r-1) \\
20 r(r+g)-20 r & =21 r(r+g)-21(r+g) \\
r+21 g & =r(r+g) \\
r+g & =1+21 g / r \tag{tabular}
\end{align*}
$$

If $r \geq 21$, then $r+g \geq 21+g$ and $1+21 g / r \leq 1+g$, a contradiction. So $r \leq 20$.
If $r=20$, then $20+g=1+21 g / 20$, hence $g=400-20=380$ and $r+g=400$.
We also have the equation $(21-r) g=r(r-1)$.
If $r<20$, then $g<(21-r) g=r(r-1)<20 \times 19=380$, hence $r+g<20+380=400$.
So the largest number of sweets in the jar is 400.

Method 3

Let there be r red sweets and g green sweets. We may assume $r \geq 2$. Let $n=r+g$. Then the probability of selecting two red sweets if the first sweet is put back is

$$
\begin{equation*}
\frac{r}{n} \times \frac{r}{n} \tag{1}
\end{equation*}
$$

and the probability if Dan eats the first sweet before selecting the second is

$$
\begin{equation*}
\frac{r}{n} \times \frac{r-1}{n-1} \tag{1}
\end{equation*}
$$

The first probability is 105% of the second, so dividing and rearranging gives

$$
\begin{aligned}
\frac{r}{n} \times \frac{n-1}{r-1} & =\frac{105}{100}=\frac{21}{20} \\
20 r(n-1) & =21 n(r-1) \\
21 n-n r-20 r & =0 \\
(n+20)(21-r) & =420
\end{aligned}
$$

Since $n+20$ is positive, $21-r$ is positive
Hence n is largest when $21-r=1$ and then $n+20=420$.
So the largest number of sweets in the jar is $\mathbf{4 0 0}$.

Comment

Since $21-r$ is a factor of 420 and $2 \leq r \leq 20$, the following table gives all possible values of r, n, g.

$21-r$	$n+20$	r	n	g
1	420	20	400	380
2	210	19	190	171
3	140	18	120	102
4	105	17	85	68
5	84	16	64	48
6	70	15	50	35
7	60	14	40	26
10	42	11	22	11
12	35	9	15	6
14	30	7	10	3
15	28	6	8	2

8. Let $W X Y Z$ be a square that encloses the three circles and is as small as possible. Let the centres of the three given circles be A, B, C. Then $A B C$ is an equilateral triangle of side length 1. We may assume that A, B, C are arranged anticlockwise and that the circle with centre A touches $W X$ and $W Z$. We may also assume that $W X$ is horizontal.

Note that if neither $Y X$ nor $Y Z$ touch a circle, then the square can be contracted by moving Y along the diagonal $W Y$ towards W. So at least one of $Y X$ and $Y Z$ must touch a circle and it can't be the circle with centre A. We may assume that $X Y$ touches the circle with centre B.

If $Y Z$ does not touch a circle, then the 3-circle cluster can be rotated anticlockwise about A allowing neither $Y X$ nor $Y Z$ to touch a circle. So $Y Z$ touches the circle with centre C.

Method 1

Let $A D E F$ be the rectangle with sides through C and B parallel to $W X$ and $W Z$ respectively.

Since $A F=W Z-1=W X-1=A D, A D E F$ is a square.
Since $A C=1=A B$, triangles $A F C$ and $A D B$ are congruent. So $F C=D B$ and $C E=B E$.
Let $x=A D$. Since $A B=1$ and triangle $A D B$ is right-angled, $D B=\sqrt{1-x^{2}}$.

Since $C B E$ is right-angled isosceles with $B C=1$, we have $B E=1 / \sqrt{2}$.
So $x=D E=\sqrt{1-x^{2}}+1 / \sqrt{2}$.
Squaring both sides of $x-1 / \sqrt{2}=\sqrt{1-x^{2}}$ gives

$$
\begin{aligned}
1-x^{2} & =(x-1 / \sqrt{2})^{2}=x^{2}-\sqrt{2} x+1 / 2 \\
0 & =2 x^{2}-\sqrt{2} x-1 / 2 \\
x & =(\sqrt{2} \pm \sqrt{2+4}) / 4
\end{aligned}
$$

Since $x>0$, we have $x=(\sqrt{2}+\sqrt{6}) / 4=(\sqrt{18}+\sqrt{54}) / 12$. Hence $W X=1+(\sqrt{18}+\sqrt{54}) / 12$. We are told that $W X=a+(\sqrt{b}+\sqrt{c}) / 12$ where a, b, c are unique integers. This gives $a+b+c=1+18+54=73$.

Method 2

Draw lines through A parallel to $W X$ and $W Z$.

With angles x and z as shown, we have

$$
\begin{aligned}
W X & =\frac{1}{2}+A B \cos x+\frac{1}{2}=1+\cos x \\
W Z & =\frac{1}{2}+A C \cos z+\frac{1}{2}=1+\cos z
\end{aligned}
$$

Since $W X=W Z, x=z$. Since $x+60^{\circ}+z=90^{\circ}$, we have $x=15^{\circ}$. So

$$
\begin{aligned}
W X & =1+\cos 15^{\circ}=1+\cos \left(45^{\circ}-30^{\circ}\right) \\
& =1+\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} \\
& =1+\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2} \\
& =1+\frac{1+\sqrt{3}}{2 \sqrt{2}}=1+\frac{\sqrt{2}+\sqrt{6}}{4}=1+\frac{\sqrt{18}+\sqrt{54}}{12}
\end{aligned}
$$

We are told that $W X=a+(\sqrt{b}+\sqrt{c}) / 12$ where a, b, c are unique integers. This gives $a+b+c=1+18+54=73$.

9. Method 1

Let the pair of intersecting lines be $A C$ and $B D$ where A, B, C, D are four of the ten given points. These lines split the remaining six points into four subsets $S_{1}, S_{2}, S_{3}, S_{4}$. For each i, each line segment beginning in S_{i} also ends in S_{i}, otherwise $A C$ and $B D$ would not be the only intersecting pair of lines. Thus each S_{i} contains an even number of points, from 0 to 6 . 1
If S_{i} contains 2 points, then there it has only 1 line segment. If S_{i} contains 4 points, then there are precisely 2 ways to connect its points in pairs by non-crossing segments. If S_{i} contains 6 points, let the points be $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}$ in clockwise order. To avoid crossing segments, Q_{1} must be connected to one of Q_{2}, Q_{4}, Q_{6}. So, as shown, there are precisely 5 ways to connect the six points in pairs by non-crossing segments.

In some order, the sizes of $S_{1}, S_{2}, S_{3}, S_{4}$ are $\{6,0,0,0\},\{4,2,0,0\}$, or $\{2,2,2,0\}$. We consider the three cases separately.

In the first case, by rotation about the circle, there are 10 ways to place the S_{i} that has 6 points. Then there are 5 ways to arrange the line segments within that S_{i}. So the number of ways to draw the line segments in this case is $10 \times 5=50$.

In the second case, in clockwise order, the sizes of the S_{i} must be $(4,2,0,0),(4,0,2,0)$ or $(4,0,0,2)$. In each case, by rotation about the circle, there are 10 ways to place the S_{i}. Then there are 2 ways to arrange line segments within the S_{i} that has 4 points, and there is 1 way to arrange the line segment within the S_{i} that has 2 points. So the number of ways to draw the line segments in this case is $3 \times 10 \times 2 \times 1=60$.

In the third case, in clockwise order, the sizes of the S_{i} must be $(2,2,2,0)$. By rotation about the circle, there are 10 ways to place the S_{i}. Then there is only 1 way to arrange the line segment within each S_{i} that has 2 points. So there are 10 ways to arrange the line segments in this case.

In total, the number of ways to arrange the line segments is $50+60+10=\mathbf{1 2 0}$.

Method 2

The pair of intersecting lines partition the circle into four arcs. In order to allow the remaining points to be paired up without further crossings, we require each such arc to contain an even number of points.
So each line of a crossing pair partitions the circle into two arcs, each of which contain an odd number of points. Disregarding rotation of the circle, a crossing line is one of only two types.

So, disregarding rotations, there are only four ways to have the pair of crossing lines. Underneath each diagram we list the number of ways of joining up the remaining pairs of points without introducing more crossings. (The number 5 is justified in Method 1.)

1

2

So, counting rotations, the number of pairings with a single crossing is $10 \times(5+2+2+1+2)=\mathbf{1 2 0}$.

10. Since the 2 nd, 4th, 6 th, 8 th and 10 th digits must be even, the other digits must be odd. Since the last digit must be 0 , the fifth digit must be 5 .
Let a be the 3rd digit and b be the 4 th digit. If b is 4 or 8 , then 4 divides b but does not divide $10 a$ since a is odd. Hence 4 does not divide $10 a+b$. So the 4 th digit is 2 or 6 .
Now let a, b, c be the 6 th, 7 th, 8 th digits respectively. If c is 8 , then 8 divides $100 a+c$ but does not divide $10 b$ since b is odd. Hence 8 does not divide $100 a+10 b+c$. If c is 4 , then 8 divides $100 a$ but does not divide $10 b+c=2(5 b+2)$ since b is odd. Hence 8 does not divide $100 a+10 b+c$. So the 8 th digit is 2 or 6 .
So each of the 2 nd and 6 th digits is 4 or 8 .
Since 3 divides the sum of the first three digits and the sum of the first six digits, it also divides the sum of the 4 th, 5 th, and 6 th digits. So the 4 th, 5 th, and 6 th digits are respectively 258 or 654 . Thus we have two cases with a, b, c, d equal to $1,3,7,9$ in some order.

Case 1. $a 4 b 258 c 6 d 0$
Since 3 divides $a+4+b$, one of a and b equals 1 and the other is 7 . Since 8 divides $8 c 6$, c is 9 . So we have $14725896 d 0$ or $74125896 d 0$. But neither 1472589 nor 7412589 is a multiple of 7 .
Case 2. a $8 b 654 c 2 d 0$
Since 8 divides $4 c 2, c$ is 3 or 7 .
If $c=3$, then, because 3 divides $a+8+b$, we have one of:
$18965432 d 0, \quad 78965432 d 0, \quad 98165432 d 0, \quad 98765432 d 0$.
But none of $1896543,7896543,9816543,9876543$ is a multiple of 7 .
If $c=7$, then, because 3 divides $a+8+b$, we have one of:
$18365472 d 0, \quad 18965472 d 0, \quad 38165472 d 0, \quad 98165472 d 0$.
None of 1836547 , 1896547 , 9816547 is a multiple of 7 .
This leaves 3816547290 as the only draw.

Investigation

Note that B must play an even digit on each turn.
If A starts with 2 , then B can only respond with $20,24,26$, or 28 . A may then leave one of 204, $240,261,285$. B cannot respond to 261 . The other numbers force respectively 20485,24085 , 28560. B cannot respond to any of these.
bonus 1
If A starts with 4 , then B can only respond with $40,42,46$, or 48 . A may then leave one of $408,420,462,480 . B$ cannot respond to 408 and 480 . Each of the other numbers force one of $42085,46205,46280,46285$. B cannot respond to any of these.
bonus 1
If A starts with 6 , then B can only respond with $60,62,64$, or 68 . A may then leave one of 609 , $621,648,684$. B cannot respond to 621 . The other numbers force respectively 60925,64805 , 68405. B can only respond with 609258 . Then A may reply with 6092583 , to which B has no response.
bonus 1
If A starts with 8 , then B can only respond with $80,82,84$, or 86 . A may then leave one of $804,825,840,864$. B cannot respond to 804 and 840 . The other numbers force respectively 82560,86405 . B cannot respond to either of these.

Marking Scheme

1. Establishing a relevant quadratic equation. Correct answer (57).
2. A valid approach with a relevant diagram. Correct answer (720).
3. Correct total area of the 12 cards.

A useful equation in two variables and useful constraints on the variables. Correct answer (55).
4. A valid approach with some progress.

Further progress.
Correct answer (17).
5. A useful diagram.

Establishing useful ratios.
Correct answer (105).
6. A useful diagram.

Some useful calculations.
More calculations.
Correct answer (150).
7. Establishing a relevant probability expression.

Establishing another relevant probability expression.
Establishing a simplified equation.
Correct answer (400).
8. Establishing 4 square sides touch a circle.

A useful construction.
Establishing a useful equation in one variable.
Correct answer (73).
9. Useful approach.

Some progress.
Establishing relevant cases and correctly enumerating one case.
Correctly enumerating another case.
Completing the enumeration with the correct answer (120).
10. Establishing places for odd digits and 0 and 5.

Establishing relevant options for the even digits.
Establishing relevant cases.
Correctly resolving one case.
Completing the proof with the correct answer (3816547290).
Investigation:
Proving A wins with first digit 2.
Proving A wins with first digit 4.
Proving A wins with first digit 6 .
Proving A wins with first digit 8.

